Python Seminar

October 5, 2016

1 Scientific Programming with Python

http://gdfa.ugr.es/python

1.1 Outline

¢ Introduction to Python

¢ Python for science, where to begin?
¢ Python language

¢ Scientific libraries

1.2 Introduction to Python
1.2.1 What is Python?

Python is a modern, general-purpose, object-oriented, high-level programming language.
General characteristics of Python:

¢ clean and simple language: Easy-to-read and intuitive code, easy-to-learn minimalistic syn-
tax, maintainability scales well with size of projects.
¢ expressive language: Fewer lines of code, fewer bugs, easier to maintain.

Technical details:

¢ dynamically typed: No need to define the type of variables, function arguments or return
types.

¢ automatic memory management: No need to explicitly allocate and deallocate memory for
variables and data arrays. No memory leak bugs.

¢ interpreted: No need to compile the code. The Python interpreter reads and executes the
python code directly.

1.2.2 Advantages:

¢ The main advantage is ease of programming, minimizing the time required to develop,
debug and maintain the code.

¢ Well designed language that encourage many good programming practices:

* Modular and object-oriented programming, good system for packaging and re-use of code.
This often results in more transparent, maintainable and bug-free code.

http://gdfa.ugr.es/python
http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-0-Scientific-Computing-with-Python.ipynb#What-is-Python?
http://www.python.org

Documentation tightly integrated with the code.

A large standard library, and a large collection of add-on packages.

Packaging of programs into standard executables, that work on computers without Python
installed.

Disadvantages:

Since Python is an interpreted and dynamically typed programming language, the execu-
tion of python code can be slow compared to compiled statically typed programming lan-
guages, such as C and Fortran.

Somewhat decentralized, with different environment, packages and documentation
spread out at different places. Can make it harder to get started.

1.2.4 What makes python suitable for scientific computing?

UL SRATICSS T PRCLECT P

TOOLBOX

PICKUP PYTHON

A powerful programming language with huge community support.

BT JUFIRLT W, PLRELL

aut montk, Ading Hiser book up a poet
| al bowa Stabe Unbvemsity in Ames. 04
1aly, ihie |5 b dcisr . et odmand o gl
cultnral and isryvierns englasering, Bt dhe
werka ot in the grerchbouse, but in Front of
kejbnard Howe b & programsmmer, isd & key
part afber job 1101 o ety dvel
opiag cuarkculs totesch the neat geoeration
ool rncduies abwi the e sl impoe-
inde of aclenlillc progFumming.
Howe deoes not e & degres In compuser

wierure P ihev she b s ol fromal ivsn.

Forvwn spec laline o biol afarmatic and uen
COMMEREREhON 0 xtract mmamning from o
ety wets, wned Hore Busd 30 gt 1 4o apoed on
e comguiational side. Browsls recommersis
i bearm Pyihion.
Asraeg e bl of Cormpuler- preyrassming
langae that scientits might choowe 30 pick
i, Pyl (el reledsed i 199 by Dach peo-
Cazida wan Resssn, i1 an iscremingly
popaiaer {anad froe) peconamsemdistion. [E oo
Dokt sl e oL vl corili e res<earo
il i Fich ecodydem of sckeatifoally kxoued
odicine with a hewry emgprhu s oo commarnds

s brsomisg ever mom craclal Roearch
e wha cun write code In Python can defily
manage their dats scta, and work s2uch mare
ailkchenthy on & wheole houk of neseardh. pelaged
tashs — Bevarm o hilig Sambeers bo cheaning
up, snilysing and visoalisng dals Whereas
wome programming ogasees, wod s MAT
LAH i B, foiia o mrathesnisoel sl il
tical opeesticen, Prihes s preenl perpose
langeage. diong the llnes of C and G+ (the
Ly o which mech commeendial safeare
il opeEilisg flaEn e wEillen). A ach, 1L
peer b oot complicaried Beown e b also

e Fimabie i s arrenahde i s deoes

Nature 518, 125-126 (05 February 2015) | doi:10.1038/518125a

¢ Python has a strong position in scientific computing

- Large community of users, easy to find help and documentation.

* Extensive ecosystem of scientific libraries

NumPy: numerical Python ~ MATLAB matrices and arrays
SciPy: scientific Python ~ MATLAB toolboxes
pandas: extends NumPy

Matplotlib: graphics library

https://doi.org/10.1038/518125a
http://www.numpy.org
http://www.scipy.org
http://pandas.pydata.org
http://www.matplotlib.org

- Sympy: symbolic mathematics library

¢ Scientific (and non-scientific) development environments available

spyder: MATLAB-like environment

Jupyter /IPython notebooks: environment for interactive and exploratory Python
Rodeo: new Python environment for data science

PyCharm: Python enviroment for developers

¢ Great performance due to close integration with time-tested and highly optimized codes
written in C and Fortran

* Readily available and suitable for use on high-performance computing clusters

¢ No license costs, no unnecessary use of research budget

1.3 Python for science, where to begin?

1.3.1 Why to choose Python 2?

¢ Python 3 is better, but some non-widespread science modules are still not compatible

¢ Differences between Python 2 and 3 are relatively minor

¢ Python 2 is actively supported. For example, Linux distributions and Macs are still using
2.x as default

1.3.2 Scientific-oriented Python Distributions

Provide a Python interpreter with commonly used scientific libraries in science like NumPy,
SciPy, Pandas, matplotlib, etc. already installed. In the past, it was usually painful to build some
of these packages. Also, include development environments with advanced editing, debugging
and introspection features.

¢ Anaconda

http://www.sympy.org
https://github.com/spyder-ide/spyder
http://jupyter.org
http://rodeo.yhat.com
https://www.jetbrains.com/pycharm
https://www.continuum.io/downloads

— Cross-platform
- Supports Python 2 and 3
— Most widely adopted

¢ Canopy

— Cross-platform
— Only supports Python 2

¢ Python(x,y)

- Windows-only platform
— Only support Python 2

J ANACONDA = et uons

Powered by Continuum Analytics

Python interpreter

@ python

Scientific libraries

Numpy gscipy pandas LL W4 Scmatplotlib 4§ symey

Development environments

AR - | g
® & v < Rodeo ﬂ

https://store.enthought.com/downloads
http://python-xy.github.io/downloads.html

1.3.3 Anaconda navigator

Sign in to Anscoesds Clowd
* :
My Applications Refresh
Environments
L o o o
e
—
jupyter
.
= glueviz noteboak
‘Community
e
tion across Web-based, interactive computing Py
onships within and rotebaoni enironment. Edit arope

Based data mining Framewor
Develogstr Blog ization and data analyss for

alarge toolbax
feedback

¥y &5 9

1.3.4 Anaconda navigator: installing new packages

L] L]) Anaconda Maviga Beta
Siga in ko Anaconds Clowd
A Home
a d ~ | Channels Updateindex. 5 kages @

T ents £ - Hame v T Description Versien
£ Bl ioython pevarars b warh with s Lot dia 324
B nose) Nose extends untest to make testing easier 17

B notebook) Web-based notebook environment for interactive computing A s
B numba) Numgry sware dynamic pythan compder using lhm a8
0 al expres 261
D) Array processing 11
< a 114
B odo D shapeshilting for pour data as0
B openmyd D A psthon ibrary to readfwrite excel 2010 xuxfulsm files 232
& opensst) ‘Opensslis an open-source implementation of the ssl and tis protocels 102
B pandss D) Powerful data structures and data anak 11}
B partd D Apoerdable key-value byte store 03
Ferdhack e
v & ° o

1.3.5 spyder

energies = reros((le
res((Te

eraal
= zeros((len(epsd_vec), 23
wf_gnd_prod = zeros({lenepsd_vec), 23}

for idx, epsd in enuserate(eps@vec):

WO = - deltas2.0 * sx - epsdi2.0 * sz
HL = AS2B % ux

K=+ W1 ® singw *) in the ‘list-string’ formot
M= (W2, [H1, 'sin(w * £3"]]

Hargs = {'w': omega}

find the floguet modes

fmodes f_energies - floquet_modes(M, T, Margs)

orint “Floguet quosienergies[”,ids,”] ==, fenergies

EIRR|F\R|R\E|R|R|R|E

quasi_energies[ids, 1] = fenergies

f_gnd_problidx, @] = expect(s=.dag(} * sm, f_modes[8])
f_gnd_proofids, 1] = expect(am.dog() * sm, f_modes[1]}

f.states = floquet_stotes_t(f_modes, fenergies, @, M, T, Morgs)

wi_gnd_prob[ids, @] = expect(in.dog() * =, f_states[W])
wf_gnd_prob[idx, 1] = expect(sm.dog() * s, f_states[1]) -
= basis(2,8) # initial stare
1.8 * 2 * pi # driving frequency
w T = (2*pi)/omega # driving period
e
e M = - deltas2.@ * sx - epsi2.0 * sz
e 1
Quontus cbject: diss = [[Z], [2]], shape = (2, Z], type = oper, isher = True
Qobj dato =

[[-1.57079633 -0.62831853)
[-8.62831853 1 57079633]]
o |

Feturn quasi_energies, £gad_prob, wf_gnd_oroh

FFFEEFRRERF A S R SR T RS R S S T

81 # set up the colcwlotion: o strongly driven two-level systes
B2 # (repected LI tronsitions)

2%2°pl #aubit sigeax cosfficient
“2%pl # qubit sigeaz coefficient
relaxction rote
dephasing rate
*2°pi

ﬁ History log .JJ
Columa: §

] End-of-lines: LF Encoding: UTF-8-GUESSED Line: 58

1.3.6 IPython/Jupyter notebooks

~ Jupyter python Seminar iax 15 mnos 2

File Edit View Inset Cell Kemel ‘idgets Help | Pythonz ©

B + x @ 0B 4+ + H B C Mkdwn ¢ 2 Celfoobar & 4 O

0.10 - ' . ' ' ' L
@ 0.08- -
;R :
= gigs - z
o 0.00 -] -
5 ~0.02 - -
—0.04 - _
=0.06 - " " V " ' -
590 20 an | A0] an 100 120
—itn 2
E‘ 3
2 =
=
E1- -
0~ " d " g -
0.0 0.2 0.4 0.6 0.8 1o
Freq (Hz)
Slide Type Slide H
Sympy
SymPy is a Python library for symbolic mathematics.
In [47]: Slide Type B
from sympy import symbols, init printing
init printing() # pretty printing
%, ¥ = symbols('x y")
expr = x + 2vy
axpr
Out[47]: x+42y
In [4B]: Slide Type B

expr + 1
Out[4B]:r x+2y+1

1.3.7 Rodeo (need to be installed separately from Anaconda)

o

atart

it x, " is @ palesdrese, from "0,

® i TR |
palendroms, azperd(x)

s (pelendeoms)

Rodeo
o DH:
Type ©

List of length 95 =
palendrams st m
X vdarray Array [40 x 40) =
R nelacray Array [40 x 40) =
z ndarray Array [40 % 40) =
¥ Array [40 x 40) =
o [50 rows x 4 cols] m

[
o
3
T
mA v LUILLLLIRL
e
h d to bei 1led ly f d
1.3.8 PyCharm (need to be installed separately from Anaconda)
L] [] catalogue.feature - test_oroject - (~/Projects/test_project]
£ vest_penject : [7 test_project | (5] features.) [catalogue feature canioquetearre - | B W B2 B H T P P 5 [odwamkcr Q
'y " D | @B | D canague " B cataioquepy x o
v Cltest project t5/test_pecject 1 ¥ 1 from behave import « - g
- =F 2 2 froa djsego.apps import apps -
B8 v Elproducts 3 ide Bocess 10 products 1 £
: ;
5 T want to browse products catalogue 5 Bgiven(~“there are set of {model_name}s in database™)
& [leomtext, sedel_nese):
7 on homepage T
8 e set of prodects.Prodects in database L]
9 | description | price | 1
1 | Product 1 | description 2 | 18 1 w
1 I 2 | Preduct 2 | description 3 | 29 1 1 model = apps.get_model(smodel_rame. split()]
Whes I go te /S 12 for row in context.table
1 Thea the page includes “Produ 13 model.objects. create
14 And the page includes “Product 2 14 o
15 15
it Scenario: prodect detail page 7
e 17 Given there is a Product in database 17
it 18 i | witl, | description | price | 1 i
) 19 1| Product 1 | descripticn 2 | 18 | 1 °
L] LU wn Whea I go to fproducts/1/ n hasa
B catalogue.py 2 Thea the page includes “F n e
& canalogue feature n Aad the page Sncludes n =
: a pocied vl 3 =
nviroament py n b
o __init__py »
& settings.py Ed @then!"the page includes “Product 1°')
s 2 def step_inplicontext):
B urls. oy 28
B wagipy]
© gitignore ™ -
M db.sglite3 T assert Falis
Boansgery b
Run [catoguefesture Bk
P ea@ TE++0 8 tests done- 3 failed, 3 ignored - Dms
¥ v @ Test Results ams Fovenvlbin/python /Applicatisns/Pylhars, app/Contents be L pers/pychara/behave_runer. by .
@ ¥ @ products catalogue +
* @ products on homepage
L] » @ product detail page {to-packages/behave/model gy, Line 1456, in run
avessodel.py”, Line 1903, fn run
- . rgs) [}
£ X “test_project/features/steps/catalogue.zy”, lise 31, in step impl e
2 *® aisert False -
-
Gk
lae
B dimun| TETO00 managepyBuestprojct # Pyhon Console M 9 Version Conrol [Terminal Wy Event Log
[0 Tests Failed: 3 passed, 3 failed (momens agol 40 W UTF-8: Citewvters B 5

Editor

Learning curve

Users Benefits

spyder
rodeo

pretty short
pretty short

Matlab and R background mature, many features
Matlab and R background modern, essential features

8

Editor Learning curve Users Benefits

IPython/Jupyter smooth teachers interactive
PyCharm moderate developers code quality

1.3.9 Where to look for help?

e Official documentation: http://www.scipy.org/docs.html
¢ Usually included in development environments as contextual help:

— spyder: Ctrl+I (Windows) or Cmd+I (Mac)
— PyCharm: F1 (Windows/Mac)
— Rodeo: ?f in the console

¢ Be careful about code you get on the internet!

¢ Dedicated offline documentation browser (Python, LaTeX, C++, Java, Bootstrap, Bash, .. .):

— Zeal (Windows/Linux): Free

— Dash (Mac): Commercial

- Velocity (Windows): Commercial
1.4 Python language
1.4.1 Using Python as a Calculator
In [1]: 2 + 2

Out[l]: 4

In [2]: 17 / 3 # int / int —> 1int

Oout[2]: 5
In [3]: from __ future__ import division
17 / 3

Out[3]: 5.666666666666667

1.4.2 Strings

In [4]: prefix = 'Py'
word = prefix + 'thon'

character in position 0
print word[O0]

characters from position 2 (included) to 5 (excluded)
print word[2:5]

tho

http://www.scipy.org/docs.html
https://zealdocs.org
https://kapeli.com/dash
http://velocity.silverlakesoftware.com

Note

0-based indexing

half-open range indexing: [a, b)
print statement to get outputs
line comments

1.4.3 Lists

In [5]: # empty list
squares = []

lists might contain items of different types
squares = ['cat', 4, 3.2]

negative indices mean count backwards from end of sequence
print squares[-1]

list concatenation
squares = squares + [81, 'dog']

1list functions
squares.remove (3.2) # remove the first ocurrence
squares.append('horse') # concatenation: same as +

print squares

3.2
['cat', 4, 81, 'dog', 'horse']

In [6]: a = ['a', 'b', 'c']

it is possible to nest lists
(create lists containing other 1ists)
X = [a, n]

print x
print x[0]
print x[0][1]

(cta*, 'b', ‘'c'l, [1, 2, 3]]
[la|, 'bl, 'C']

10

1.4.4 Simple code: Fibonacci series

In [7]: a, b =0, 1
while a < 10:
print a,
the sum of two elements defines the next
a, b=D>b, a+b

0112358

Note

¢ indentation level of statements is significant
* multiple assignment

1.4.5 if Statements

-4

if x < O:
x =0
print 'Negative changed to zero'
elif x == 0:
print 'Zero'
elif x == 1:
print 'Single'
else:
print 'More'

Negative changed to zero

1.4.6 for Statements

In [9]: words = ['cat', 'window', 'defenestrate']

for w in words:
len returns the number of items of an object.
print w, len (w)

cat 3
window 6
defenestrate 12

Warning

Please avoid Matlab-like for statements

11

In [10]: for w in range (len (words)) :
print words[w], len(words[w])

cat 3
window 6
defenestrate 12

range(stop)
Built-in function to create lists containing arithmetic progressions.

In [11]: print range (10)
print range (0, 10, 3)
print range (0, -10, -1)

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 3, 6, 9]

In [12]: for i in range(4):
print 'cat',

cat cat cat cat

In [13]: words = ['cat', 'window', 'defenestrate']

for i, w in enumerate (words) :
print i, w

0 cat
1 window
2 defenestrate

1.4.7 Functions

In [14]: def fib(n):
"""Build a Fibonacci series up to n.

Args:
n: upper limit.

Returns:
A 1ist with a Fibonacci series up to n.

mrmn

f =[] # always initialize the returned value!

12

a, b =20, 1

while a < n:
f.append(a)
the sum of two elements defines the next
a, b=D>b, a+b

return f

now call the function we just defined:
print fib (1000)

(0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

1.4.8 Functions: documentation strings (docstrings)

¢ Python documentation strings (docstrings) provide a convenient way of associating docu-
mentation with Python functions and modules.

¢ Docstrings can be written following several styles. We use Google Python Style Guide.

* An object’s docsting is defined by including a string constant as the first statement in the
function’s definition.

¢ Unlike conventional source code comments the docstring should describe what the func-
tion does, not how.

¢ All functions should have a docstring.

¢ This allows to inspect these comments at run time, for instance as an interactive help system,
or export them as HTML, LaTeX, PDF or other formats.

13

https://sphinxcontrib-napoleon.readthedocs.io/en/latest/

Spyder (Python 2.7)

iro/Development

! < 4+
o0 Gtjoct inspector
Source Editor Object fibonace.fib B 5

fib

Definition : fibin)
Type : Present in fibonacci module

Build a Fibonacci series up to n.
Args:

n: upper limit.
Returns:

A list with a Fibenacci series up to n.

Object inspector Variable explorer
[I] IPython console

ey

File explorer

file:/j{Users/pedro/Development/Jupytes Python® 20Seminar/docstrin: & =N W]
oo cnGonge cecumancing horca 01
fibonacci module

fibonacci.fibln

Build a Fibonacci seriesup ton.

Pardmetros: n - upper limit.

Devuelve: Alist with a Fibonacci series up to n.
main module

Indices and tables

« [ndice
» indice de Médules
« Pdginade Buisqueda

14

] = fibonacci.pdf

io Herramientas fibonacci.pdf *
@B EHQ OO |(slcen kMO ax - @ B @
Marcadores x
- £
E] EI %‘ [] capiTULD T
» [s
ﬂ Indices and tables
[l indice de Madulos Python e
ﬂ indice
1.1 fibonacel module
nacci ., fibin)
Fiuikd a Fifawacoi svies op on
Parkssiros f - apper vl
Devaclve A hist withh o Fltwomsdo s o
4
1.2 main medule
1.4.9 Functions: default argument values
In [15]: def fib(n, s=0):
"""Build a Fibonacci series up to n.
Args:
n: upper limit.
s: lower 1imit. Default 0.
Returns:
A list with a Fibonacci series up to n.
mmn
f = 1] # always initialize the returned value!

a, b=20, 1
while a < n:
if a >= s: # lower limit
f.append(a)

the sum of two elements defines the next

a, b =>b, a+b
return f
print fib (1000, 15)

print f£ib (1000, O0)
print fib(1000)

(21, 34, 55, 89, 144, 233, 377, 610, 987]

15

(6, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]
(6, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

1.4.10 Functions: keyword arguments

In [16]: print fib (1000, 15) # positional arguments
print fib(s=15, n=1000) # keyword arguments

[21, 34, 55, 89, 144, 233, 377, 610, 987]
(21, 34, 55, 89, 144, 233, 377, 610, 987]

1.4.11 Functions: returning multiple values

In [17]: def fib(n, s=0):
"""Build a Fibonacci series up to n.

Args:
n: upper limit.
s: lower 1imit. Default 0.

Returns:
(£, 1):
* “f'": list with a Fibonacci series up to n.
* "1 °: length of Fibonacci series.

mimn

f = 1] # always initialize return values!

1 =0

a, b=20, 1
while a < n:
if a >= s: # lower limit
f.append(a)
the sum of two elements defines the next
a, b=D>b, a+b
1 = len(f) # number of elements

return £, 1
a, b = fib(1000)
print a

print b

c = £ib(1000)
print c

16

(o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,

(¢, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,

1.4.12 Functions: importing external functions

In [18]: import fibonacci # without .py extension

print fibonacci.fib (3)

In [19]: from fibonacci import fib

print fib(3)

In [20]: import fibonacci as £ # alias

print f£.fib(3)

Recommendation
The best way to import libraries is included in their official help

Some examples:

import math

import numpy as np

from scipy import linalg, optimize
import pandas as pd

import matplotlib as mpl

import matplotlib.pyplot as plt
import sympy

1.4.13 Functions: main
fibonacci.py

if name == ' _ main '

print f£ib(1000)

A file fibonacci.py can be used in two ways.

17

377,

3717,

610,

610,

987]

9871,

17)

e imported in another file: import fibonacci. In this case internal variable _ name_
is fibonacci (the name of the imported module), and print £ib (1000) does not get
executed

¢ executed directly: python foo.py. In this case internal variable __name__ have a value
__main__,and print fib (1000) does get executed

1.4.14 Functions: modules and packages

Modules in Python are simply Python files with the .py extension, which implement a set of
functions. Modules are imported from other modules using the import command.

Packages are simply directories which contain a special file called __init__ .py. This file
can be empty, and it indicates that the directory it contains is a Python package, so it can be
imported the same way a module can be imported. Packages contain multiple modules and
packages themselves.

1.4.15 Functions: passing arguments by assignment
Arguments are passed by assignment in Python. Since assignment just creates references to ob-
jects, it depends on the mutability of the arguments if they will be altered or not inside functions.
Common immutable type:

e numbers: int, float, complex

¢ immutable sequences: str (strings), tuple
Common mutable type (almost everything else):

* mutable sequences: 1ist

* mapping type: dict

* classes: ndarray (numpy arrays), Series (pandas one-dimensional array), DataFrame
(pandas 2-dimensional array)

The function deepcopy (x) from module copy is available when it is needed to make a copy
of a mutable argument to avoid its modification inside a function:
1.4.16 Procedures: functions without a return value

A procedure is a sub-routine that does not return a value, but does have side-effects. This could
be writing to a file, printing to the screen, or modifying the value of its input.

Therefore, in Python, there is not difference between function and procedures, except a proce-
dure does not contain a return statement.

def print_cat():
for 1 in range (4):

print 'cat',

In [21]: import copy

18

def add_zero_w_copy (1l):
1 _tmp = copy.deepcopy (1)
1_tmp.append(0)

def add_zero_wo_copy (1) :
1.append(0)

add_zero_w_copy (nums)
print nums

add_zero_wo_copy (nums)
print nums

1.4.17 Code Style

¢ Style Guide for Python Code: PEPS.

¢ Use only English (ASCII) characters for variables, functions and files. It is possible to
use non-English characters in strings and comments by adding the following line at the
beginning of each file: # —+x- coding: utf-8 —*-.

e Name your variables, functions and files consistently: the convention is to use
lower_case_with_underscores.

¢ We all use single-quoted strings to be consistent. Nevertheless, single-quoted strings and
double-quoted strings are the same. PEP does not make a recommendation for this, except
for function documentation where tripe-quote strings should be used.

¢ Constants should be written in ALL_CAPITAL_LETTERS with underscores separating
words

¢ Use spaces around operators and after commas, but not directly inside bracketing constructs:
a = £(1, 2) + g(3, 4)

¢ To avoid conflicts with Python keywords, simple add a single trailing_underscore: abs_

1.4.18 PEPS8 exceptions:

Long lines It is very conservative and requires limiting lines to 79 characters. We use all lines
to a maximum of 119 characters. This is the default behaviour in PyCharm.

Disable checks in one line Skip validation in one lines by adding following comment:
nopep8

1.4.19 datetime data type

The datetime module supplies classes for manipulating dates and times. Avoid converting
dates or times to int (datenum or similar).

19

In [22]: from datetime import datetime, date, time
Using datetime.combine ()
d = date (2005, 7, 14)
t = time (12, 30)
dtl = datetime.combine(d, t)

print dtl
print dtl.year

2005-07-14 12:30:00
2005

In [23]: from datetime import timedelta
dt2 = dtl + timedelta (hours=5)

print dt2

2005-07-14 17:30:00

timedelta([days[, seconds[, microseconds[, milliseconds[, minutes],
hours[, weeks]111111)

All arguments are optional and default to 0. Arguments may be ints, longs, or floats,
and may be positive or negative.

1.4.20 boolean data type

boolean values are the two constant objects False and True. In numeric contexts (for example
when used as the argument to an arithmetic operator), they behave like the integers 0 and 1,
respectively.

Nevertheless, other values can also be considered false or true: * the following values are
considered false: 0, ' ', [1, (), {}, None * all other values are considered true, so objects of many
types are always true
1.4.21 Recommended preferences settings for spyder

Plots on a separate window

® TPython console ->Graphics ->Graphics backend->Automatic.

It is necessary to restart spyder (or at least IPython kernel) to take affect.

Activate PEPS8 checking

® Preferences -> Editor -> Code Instropection/Analysis -> Analysis -> Style
analysis (pep8)

20

Modify the maximum line length:

Step 1

® Preferences->Editor->Show vertical line after 119 characters

Step 2

¢ Create a file:

Windows Mac

file name .pep8 pep8

folder user folder (usually ~/ .config (usually
C:\Users\<username>) /Users/<username>)

With the following content:

[pep8]
max—line-length = 119

1.4.22 Moreon list

The list data type has some more methods. Here are all of the methods of list objects:

append (x) Add an item to the end of the list; equivalent to a[len(a):] = [x].

extend (L) Extend the list by appending all the items in the given list; equivalent to a[len(a):]
=L.

insert (1, x) Insertan item ata given position. The first argument is the index of the element
before which to insert, so a.insert(0, x) inserts at the front of the list, and a.insert(len(a), x) is
equivalent to a.append(x).

remove (x) Remove the first item from the list whose value is x. It is an error if there is no
such item.

pop ([1]) Remove the item at the given position in the list, and return it. If no index is
specified, a.pop() removes and returns the last item in the list. (The square brackets around the
i in the method signature denote that the parameter is optional, not that you should type square
brackets at that position. You will see this notation frequently in the Python Library Reference.)

index (x) Return the index in the list of the first item whose value is x. It is an error if there is
no such item.

count (x) Return the number of times x appears in the list.

sort (cmp=None, key=None, reverse=False) Sorttheitems of the list in place (the argu-
ments can be used for sort customization, see sorted() for their explanation).

reverse () Reverse the elements of the list, in place.

1.4.23 List comprehensions

List comprehensions provide a concise way to create lists. Common applications are to make

new lists where each element is the result of some operations applied to each member of another

sequence or iterable, or to create a subsequence of those elements that satisfy a certain condition.
For example, assume we want to create a list of squares, like:

21

In [24]: squares = []
for x in range(10):
squares.append (x**2)

print squares

(o, 1, 4, 9, 16, 25, 36, 49, 64, 81]

We can obtain the same result with:
In [25]: squares = []
squares = [x*x2 for x in range (10)]
print squares

(0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

A list comprehension consists of brackets containing an expression followed by a for clause,
then zero or more for or if clauses. The result will be a new list resulting from evaluating the
expression in the context of the for and if clauses which follow it.

1.4.24 Lambda expressions

Small anonymous functions can be created with the lambda keyword. To create a lambda func-
tion first write keyword lambda followed by one of more arguments separated by comma, fol-
lowed by colon sign (:), followed by a single line expression. Note that lambda function cannot
contain more than one expression.

In [26]: print map (lambda x: x**2, range(10))
(0, 1, 4, 9, 16, 25, 36, 49, o064, 81]

map (function, iterable, ...) > Apply function to every item of iterable and return a
list of the results.

1.4.25 Dictionaries

A dictionary is a data type which allows to store data just like a 1ist, but instead of using only
numbers to get the data it is possible to use strings or other data types as the index. This is very
useful for storing and organizing data. Note that dictionaries are unordered key-value-pairs.

In [27]: tel = {'jack': 4098, 'sape': 4139}

tel['guido'] = 4127
print tel

print tel['jack']

{'sape': 4139, 'jack': 4098, 'guido': 4127}
4098

22

Note

OrderedDict is available if you need a ordered dictionary.

In [28]: from collections import OrderedDict

ordered_tel = OrderedDict ([('jack', 4098), ('sape', 4139),
("guido', 4127)1)
print ordered_tel

OrderedDict ([('jack', 4098), ('sape', 4139), ('guido', 4127)1])

1.4.26 Sets

A set object is an unordered collection of distinct objects.

In [29]: s = set([1, O, 2, 2, 31)

print s

1.4.27 One line if statement

<expressionl> if <condition> else <expression2>

In [30]: age = 15
Conditions are evaluated from left to right
print ('kid' if age < 18 else 'adult')

kid

Programming languages derived from C usually have following syntax:
<condition> ? <expressionl> : <expression2>

The creator of Python, Guido van Rossum, rejected it as non-Pythonic, since it is hard to un-

derstand for people not used to C.

1.4.28 Logging

Logging is a means of tracking events that happen when some software runs. The software’s
developer adds logging calls to their code to indicate that certain events have occurred. An event
is described by a descriptive message which can optionally contain variable data (i.e. data that is
potentially different for each occurrence of the event). Events also have an importance which the

developer ascribes to the event; the importance can also be called the level or severity.
The logging is better than printing because:

¢ Itis easy to put a timestamp in each message, which is very handy.

23

* You can have different levels of urgency for messages, and filter out less urgent messages.

¢ When you want to later find /remove log messages, you will not get them confused for real
print () calls.

e If you just print to a log file, it is easy to leave the log function calls in and just ignore them
when you do not need them. You do not have to constantly pull out print () calls.

To print log messages to the screen:

import logging
logging.basicConfig(level=1logging.DEBUG,
format='% (asctime)s - %$(levelname)s - % (message)s')

[o)

logging.info('added %$s and %s to get %s' % (x, y, 2z))
To write log messages to a file:

import logging
logging.basicConfig(filename="'log_filename.txt',
level=logging.DEBUG,
format="'%(asctime)s - %(levelname)s - % (message)s')

)

logging.info('added %s and %s to get %s' % (x, y, z))
The different levels of logging, from highest urgency to lowest urgency, are:

logging.critical ('This is a critical message.')
logging.error ('This is an error message.')
logging.warning ('This is a warning message.')
logging.info('This is an informative message.')
logging.debug('This is a low-level debug message.')

The level argumentin logging.basicConfig call sets the minimum log level of messages
it actually logs.
1.5 Scientific libraries
1.5.1 NumPy

NumPy’s main object is the homogeneous multidimensional array (ndarray). It is a table of
elements (usually numbers), all of the same type, indexed by a tuple of positive integers. In
Numpy dimensions are called axes. The number of axes is rank.

In [31]: import numpy as np

defining arrays and matrices

Z = np.array([1l, 3, 41])

A = np.array([[1l, 11,
(0, 111)

B = np.array([[2, O],
[3, 411)

4

24

In [32]: # selecting elements
print A[O0, :]

elementwise product with x operator!
print A x B

matrix product
print np.dot (A, B)

Do O

In [33]: from numpy.linalg import solve, inv # linear algebra

a = np.linspace(-np.pi, np.pi, 10)
print a

a = np.array ([[l, 2, 3], [3, 4, 6.7], [5, 9.0, 5]])
print a

b = np.array([3, 2, 11])
print solve(a, b) # solve the equation ax = b

[-3.14159265 -2.44346095 -1.74532925 -1.04719755 -0.34906585 0.34906585
1.04719755 1.74532925 2.44346095 3.14159265]

([1. 2. 3.]
[3. 4. 6.7]
[5. 9. 5. 11

[-4.83050847 2.13559322 1.18644068]

In [34]: print inv (a)

[[-2.27683616 0.96045198 0.07909605]
[1.04519774 -0.56497175 0.1299435]
[0.39548023 0.05649718 -0.11299435]]

In [35]: print a.transpose()

[[1. 3. 5.]
[2. 4, 9. 1]
[3. 6.7 5. 1]

25

Warning

The transpose of a 1D array is still a 1D array. If you want to turn your 1D vector into
a 2D array and then transpose it, just slice it with np . newaxis.

In [36]: print Db
print b.transpose()
print b[:, np.newaxis]

ndim the number of axes (dimensions) of the array. In the Python world, the number of di-
mensions is referred to as rank.

shape the dimensions of the array. This is a tuple of integers indicating the size of the array in
each dimension. For a matrix with n rows and m columns, shape will be (n, m). The length of the
shape tuple is therefore the rank, or number of dimensions, ndim.

size the total number of elements of the array. This is equal to the product of the elements of
shape.

dtype an object describing the type of the elements in the array. One can create or spec-
ify dtype’s using standard Python types. Additionally NumPy provides types of its own.
numpy.int32, numpy.int16, and numpy.float64 are some examples.

Warning

When operating and manipulating arrays, their data is sometimes copied into a new
array and sometimes not. For example, simple assignments make no copy of array
objects or of their data.

1.5.2 Pandas

Pandas is a newer package built on top of NumPy and pandas objects are valid arguments to
most NumPy functions:

e fast and efficient Series (1-dimensional) and DataFrame (2-dimensional) heterogeneous
objects for data manipulation with integrated indexing

¢ tools for reading and writing data from different formats: CSV and text files, Microsoft
Excel, SQL databases, HDFb. ..

¢ intelligent label-based slicing

¢ time series-functionality

¢ integrated handling of missing data

In [37]: import pandas as pd

ignore the following commands

26

Out [37]:

just for the slides
pd.set_option("display.max_rows", 10)
pd.set_option("display.max_columns", 5)

simar = pd.read_table ('WANA_2006008_Algeciras.txt',
delim_whitespace=True,
parse_dates= {'date' : [0,1,2,31},
index_col="'date', skiprows=70)

simar

HmO Tm02 ... VelV DirVv
date
1996-01-14 03:00:00 0.5 2.2 4.5 176.0
1996-01-14 06:00:00 0.5 2.3 4.3 193.0
1996-01-14 09:00:00 0.4 2.3 4.3 193.0
1996-01-14 12:00:00 0.7 2.6 8.7 118.0
1996-01-14 15:00:00 0.9 3.0 8.7 118.0
1996-12-31 09:00:00 2.5 4.4 17.1 241.0
1996-12-31 12:00:00 2.0 4.1 15.4 263.0
1996-12-31 15:00:00 2.0 4.1 15.4 263.0
1996-12-31 18:00:00 1.4 3.6 12.4 263.0
1996-12-31 21:00:00 1.4 3.5 12.4 263.0

[2823 rows x 14 columns]

read_table(. . .)

Read general delimited file into DataFrame.

delim_whitespace: boolean, default False. Specifies whether or not whites-
pace (e.g. ”" or ') will be used as the sep.

parse_dates: boolean or list of ints or names or list of lists or dict, default False
boolean. dict, e.g. {foo” : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’
index_col: int or sequence or False, default None. Column to use as the row
labels of the DataFrame.

skiprows: list-like or integer, default None. Line numbers to skip (0-indexed) or
number of lines to skip (int) at the start of the file

header: int or list of ints, default ‘infer’. Row number(s) to use as the column
names, and the start of the data. Default behavior is as if set to 0 if no names
passed, otherwise None.

simar["HmO'] # selecting a single column
date

1996-01-14 03:00:00 0.5

1996-01-14 06:00:00 0.5

1996-01-14 09:00:00 0.4

27

1996-01-14 12:00:00 0.7
1996-01-14 15:00:00 0.
1996-12-31 09:00:00 2.5
1996-12-31 12:00:00 2.0
1996-12-31 15:00:00 2.0
1996-12-31 18:00:00 1.4
1996-12-31 21:00:00 1.4
Name: HmO, dtype: floaté64

In [39]: simar[['HmO', 'Tp']] # selecting several columns using a list

Oout[39]: HmO Tp
date
1996-01-14 03:00:00 0.5 2.7
1996-01-14 06:00:00 0.5 2.9
1996-01-14 09:00:00 0.4 2.9
1996-01-14 12:00:00 0.7 3.2
1996-01-14 15:00:00 0.9 3.9
1996-12-31 09:00:00 2.5 5.7
1996-12-31 12:00:00 2.0 5.2
1996-12-31 15:00:00 2.0 5.2
1996-12-31 18:00:00 1.4 4.7
1996-12-31 21:00:00 1.4 4.7

[2823 rows X 2 columns]

In [40]: simar.iloc[0:3] # selecting rows by position

out [40] : HmO TmO02 v VelV DirVv
date
1996-01-14 03:00:00 0.5 2.2 4.5 176.0
1996-01-14 06:00:00 0.5 2.3 4.3 193.0
1996-01-14 09:00:00 0.4 2.3 4.3 193.0
[3 rows x 14 columns]

In [41]: print simar.loc['1996-01-14 03:00:00"] # selecting rows by label

HmO 0.5

Tm02 2.2

Tp 2.7

DirM 185.0

HmO_V 0.4

HmO_F2 .0

TmO02_F2 0.0

DirM _F2 0.0

28

VelV 4.5
DirV 176.0
Name: 1996-01-14 03:00:00, dtype: floato4

In [42]: # selecting columns and rows

print simar.loc['1996-01-14 03:00:00', 'HmO'] # selection by label

print simar.iloc[0, 0] # selection by position
print simar.ix [0, 'HmO'] # mixed integer and label based selection
0.5
0.5
0.5
In [43]: simar.iloc[:,0]

Out [43]: date
1996-01-14 03:00:00
1996-01-14 06:00:00
1996-01-14 09:00:00
1996-01-14 12:00:00
1996-01-14 15:00:00

O O O O o
O J B~ ool

1996-12-31 09:00:00 2.5
1996-12-31 12:00:00 2.0
1996-12-31 15:00:00 2.0
1996-12-31 18:00:00 1.4
1996-12-31 21:00:00 1.4
Name: HmO, dtype: floaté64

In [44]: simar.describe ()

out [44]: HmO Tm02 ... VelV DirVv
count 2823.000000 2823.000000 ... 2823.000000 2823.000000
mean 1.206412 3.432164 9.565604 169.971661
std 0.729701 0.880544 3.607439 92.598314
min 0.100000 1.300000 0.000000 0.000000
25% 0.700000 2.800000 6.800000 80.000000
50% 1.000000 3.300000 9.600000 191.000000
75% 1.600000 4.000000 12.000000 260.000000
max 5.200000 7.400000 20.700000 360.000000
[8 rows x 14 columns]

In [45]: simar['HmO'] .value_counts () # histogram

Oout [45]1: 0.7 246
0.5 195

29

0.6 192

1.0 189
0.8 185
3.9 4
4.0 3
3.7 2
5.2 2
4.2 1

Name: HmO, dtype: int64

In [46]: simar.dropna (how="all'")

out [46]: HmO Tm02 e VelV DirVv
date
1996-01-14 03:00:00 0.5 2.2 4.5 176.0
1996-01-14 06:00:00 0.5 2.3 4.3 193.0
1996-01-14 09:00:00 0.4 2.3 4.3 193.0
1996-01-14 12:00:00 0.7 2.6 8.7 118.0
1996-01-14 15:00:00 0.9 3.0 8.7 118.0
1996-12-31 09:00:00 2.5 4.4 17.1 241.0
1996-12-31 12:00:00 2.0 4.1 15.4 263.0
1996-12-31 15:00:00 2.0 4.1 15.4 263.0
1996-12-31 18:00:00 1.4 3.6 12.4 263.0
1996-12-31 21:00:00 1.4 3.5 12.4 263.0

[2823 rows x 14 columns]
dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

Return object with labels on given axis omitted where alternately any or all of the data
are missing * how: {"any’, ‘all’}. any: if any NA values are present, drop that label. all:
if all values are NA, drop that label * axis: {0 or ‘index’, 1 or ‘columns’}, or tuple/list
thereof. Pass tuple or list to drop on multiple axes

In [47]: # selecting with complex criteria
simar[(simar['HmO'] == 0.5) & (simar['VelV'] == 4.5)]
out[47]: HmO TmO02 .. VelV DirVv
date
1996-01-14 03:00:00 0.5 2.2 4.5 176.0
1996-08-30 06:00:00 0.5 2.4 4.5 195.0
1996-08-30 09:00:00 0.5 2.4 4.5 195.0
1996-10-23 18:00:00 0.5 2.8 4.5 98.0
1996-10-23 21:00:00 0.5 2.6 4.5 98.0

[5 rows x 14 columns]

30

In [48]: simar[(simar['HmO'] == 0.5) | (simar['VelV'] == 4.5)]

Oout [48]: HmO Tm02 e VelV DirV
date
1996-01-14 03:00:00 0.5 2.2 4.5 176.0
1996-01-14 06:00:00 0.5 2.3 4.3 193.0
1996-01-19 21:00:00 0.5 3.7 3.6 251.0
1996-01-26 21:00:00 0.5 2.6 5.4 178.0
1996-02-02 12:00:00 0.4 2.2 4.5 243.0
1996-12-07 15:00:00 0.5 2.4 6.1 207.0
1996-12-08 00:00:00 0.5 2.2 6.5 225.0
1996-12-15 00:00:00 0.5 2.4 5.8 258.0
1996-12-16 03:00:00 0.5 2.6 4.0 59.0
1996-12-26 15:00:00 0.5 2.3 6.8 77.0

[205 rows x 14 columns]

Warning

It is necessary to use boolean vectors to perform this kind of operations to filter the
data. The operators are: | for or, & for and, and ~ for not. These must be grouped
by using parentheses.

Otherwise, you will get the following error message: ValueError: The truth
value of an array with more than one element is ambiguous. Use
a.any () or a.all().

In recent versions, it is possible to use query to create this kind of selection criteria.

In [49]: simar.query('HmO == 0.5 and VelV == 4.5")

Oout[49]: HmO Tm02 e VelV Dirv
date
1996-01-14 03:00:00 0.5 2.2 4.5 176.0
1996-08-30 06:00:00 0.5 2.4 4.5 195.0
1996-08-30 09:00:00 0.5 2.4 4.5 195.0
1996-10-23 18:00:00 0.5 2.8 4.5 98.0
1996-10-23 21:00:00 0.5 2.6 4.5 98.0

[5 rows x 14 columns]

153 SciPy

SciPy is a collection of mathematical algorithms and convenience functions built on the Numpy
extension of Python.

¢ (Clustering algorithms (scipy.cluster)
¢ Physical and mathematical constants (scipy.constants)

31

¢ Fast Fourier Transform routines (scipy. fftpack)

¢ Integration and ordinary differential equation solvers (scipy.integrate)
¢ Interpolation and smoothing splines (scipy.interpolate)
¢ Input and Output (scipy.io)

® Linear algebra (scipy.linalg)

¢ N-dimensional image processing (scipy.ndimage)

* Orthogonal distance regression (scipy.odr)

¢ Optimization and root-finding routines (scipy.optimize)
¢ Signal processing (scipy.signal)

¢ Sparse matrices and associated routines (scipy.sparse)

* Spatial data structures and algorithms (scipy.spatial)

® Special functions (scipy.special)

e Statistical distributions and functions (scipy.stats)

¢ C/C++ integration (scipy.weave)

1.5.4 matplotlib

matplotlib is a library for making plots in Python. The main component of matplotlib is
pylab which allow the user to create plots with code quite similar to MATLAB figure generating
code. matplotlib has its origins in emulating the MATLAB® graphics commands.

In [50]: # ignore the following command
just for the slides
tmatplotlib inline

import matplotlib.pyplot as plt

plt.figure(l, figsize=(10, 6))

plt.plot (simar.index, simar['HmO'], 'b')
plt.xticks (rotation=30)

plt.title('Simar Algeciras')

plt.ylabel ("SHm_0S")

plt.savefig('wana.png') # save to file
plt.show() # display on screen

32

Simar Algeciras

Hmy

plt.style.use('ggplot") # pre—-defined styles

plt.figure (2, figsize=(10, 6))

plt.plot (simar.index, simar['HmO'], 'b')
plt.xticks (rotation=30)

plt.title('Simar Algeciras')

plt.ylabel ('SHm_0S$")

plt.show ()

33

Hmy

Simar Algeciras

© © © \ © o © o © ©
&0 \’%C) a8 \'gq) -\ﬁ% a4 \‘%‘3 Ao \'cﬁ \\\\ -\:-Dq ¥ -\“359 e® ‘\ﬁ% ol \":ﬁ gt '\9% oL '\9%
% W B R\ W p) o w Y

plt.figure (3, figsize= (10, 6))

plt.subplot (311)

plt.plot (simar.index, simar['HmO'], 'b')
plt.ylabel ('Hm_0S")

plt.xticks ([])

plt.subplot (312)

plt.plot (simar.index, simar['Tp']l, 'c')
plt.ylabel ("S$T_pS")

plt.xticks (rotation=30)

plt.show ()

34

Hmy

Fourier Transform (full code)

In [53]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Input data

df = pd.read_csv('T130_6_1_2.csv', sep=',',skiprows=2,
header=None, error_bad_lines=False, na_values='",
skipinitialspace=True)

df

Oout [53]: 0 1 ... 8 9
0 0.019507 -0.015088 e NaN 908.778442
1 0.204670 -0.005019 e NaN NaN
2 0.205357 -0.005533 e NaN NaN
3 0.208304 -0.007504 e NaN NaN
4 0.278389 -0.027514 RN NaN NaN
1669 NaN NaN RN NaN NaN
1670 NaN NaN ce. NaN NaN
1671 NaN NaN RN NaN NaN
1672 NaN NaN .. NaN NaN
1673 NaN NaN .. NaN NaN

[1674 rows x 10 columns]

In [54]: # One-dimensional discrete Fourier Transform
y = np.fft.fft (df[1].dropna())

35

n =
y =
t

plt.

len(y)
y[range (int (n/2))]
np.linspace (0, 1, n/2)

style.use('ggplot"')

Signal plot

plt.

plt
plt
plt
plt
plt

plt.

plt

.xticks (rotation=70)

Frecuency generation

figure (4, figsize=(10, 6))
.plot (df[5], df[6], '-c', label='wv2'")
.hold (True)
.plot (df[0], df[1l], '—-.b', label='vl")
.xlabel ('time (s)', weight='bold'")
.ylabel ('velocity (m/s)', weight='bold")
legend (loc=2)

(

Signal and spectral amplitude plots
8))

plt.

plt.
.plot (df[0], df[1l], 'b'
.xlabel ('Time', weight="bold'")

.ylabel ("Amplitude', weight='bold'")

plt
plt
plt

plt.
.plot (t, abs(y), 'c")
.xlabel ('Freq (Hz)', weight="bold")
.ylabel ('|Y (freq) |', weight='bold")

plt
plt
plt

plt.

figure (5, figsize=(10,

subplot (511)

subplot (512)

show ()

)

36

0.15 - I I I I

0.10 -

0.0

0.0

velocity (m/s)

-0.0

5 -

im -

Al

R
R ——
—

5"&

—0.10 -

0.1

Amplitude
cocooocoor

CoCpooPee

54 l l l
° 2 ® 8

&p -

time (s)

MNoOMBEIOO
[N T T

[=]
(=
J

50 20 40 i 60 i a0

0.0 0.2 0.4 0.6
Freq (Hz)

1.5.5 Sympy

SymPy is a Python library for symbolic mathematics.

In

[55]:

from sympy import symbols, init_printing

init_printing() # pretty printing

symbols ('x y')
X + 2%y

X,y
expr

37

|

]
=]
~

100

0.8

120 ml

gﬂlllllllr

expr

Out [55]:
x4+ 2y
In [56]: expr + 1
Oout [56]:
r+2y+1

Derivative of sin(x)e®
In [57]: from sympy import diff, sin, exp
diff (sin (x)*xexp(x), X)
Oout [57]:
e’ sin (x) + e” cos (x)
Compute [(e®sin (z) + €® cos (z)) dx
In [58]: from sympy import integrate, cos
integrate (exp(x) * sin(x) + exp(x) * cos(x), X)
Oout [58]:
e’ sin (x)
Compute [*°_sin (2?) dx
In [59]: from sympy import oo
integrate(sin(x**2), (x, —00, 00))
out [59]:

V2T
2

38

	Scientific Programming with Python
	Outline
	Introduction to Python
	What is Python?
	Advantages:
	Disadvantages:
	What makes python suitable for scientific computing?

	Python for science, where to begin?
	Why to choose Python 2?
	Scientific-oriented Python Distributions
	Anaconda navigator
	Anaconda navigator: installing new packages
	spyder
	IPython/Jupyter notebooks
	Rodeo (need to be installed separately from Anaconda)
	PyCharm (need to be installed separately from Anaconda)
	Where to look for help?

	Python language
	Using Python as a Calculator
	Strings
	Lists
	Simple code: Fibonacci series
	if Statements
	for Statements
	Functions
	Functions: documentation strings (docstrings)
	Functions: default argument values
	Functions: keyword arguments
	Functions: returning multiple values
	Functions: importing external functions
	Functions: main
	Functions: modules and packages
	Functions: passing arguments by assignment
	Procedures: functions without a return value
	Code Style
	PEP8 exceptions:
	datetime data type
	boolean data type
	Recommended preferences settings for spyder
	More on list
	List comprehensions
	Lambda expressions
	Dictionaries
	Sets
	One line if statement
	Logging

	Scientific libraries
	NumPy
	Pandas
	SciPy
	matplotlib
	Sympy

